Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-464595

RESUMO

Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a spike-GAG complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar GAG-binding activities but with reduced affinity for DNA topoisomerase may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447221

RESUMO

SARS-CoV-2 continues to circulate globally resulting in emergence of several variants of concern (VOC), including B.1.1.7 and B.1.351 that show increased transmissibility and enhanced resistance to antibody neutralization. In a K18-hACE2 transgenic mouse model, we demonstrate that Both B.1.1.7 and B.1.351 are 100 times more lethal than the original SARS-CoV-2 bearing 614D. Mice infected with B.1.1.7 and B.1.351 exhibited more severe lesions in internal organs than those infected with early SARS-CoV-2 strains bearing 614D or 614G. Infection of B.1.1.7 and B.1.351 also results in distinct tissue-specific cytokine signatures, significant D-dimer depositions in vital organs and less pulmonary hypoxia signaling before death as compared to the mice infected with early SARS-CoV-2 strains. However, K18-hACE2 mice with the pre-existing immunity from prior infection or immunization were resistant to the lethal reinfection of B.1.1.7 or B.1.351, despite having reduced neutralization titers against these VOC. Our study reveals distinguishing pathogenic patterns of B.1.1.7 and B.1.351 variants from those early SARS-CoV-2 strains in K18-hACE2 mice, which will help to inform potential medical interventions for combatting COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...